Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract. Mountainous regions act as the water towers of the worldby producing streamflow and groundwater recharge, a function that isparticularly important in semiarid regions. Quantifying rates of mountainsystem recharge is difficult, and hydrologic models offer a method toestimate recharge over large scales. These recharge estimates are prone touncertainty from various sources including model structure and parameters.The quality of meteorological forcing datasets, particularly in mountainousregions, is a large source of uncertainty that is often neglected ingroundwater investigations. In this contribution, we quantify the impact ofuncertainty in both precipitation and air temperature forcing datasets onthe simulated groundwater recharge in the mountainous watershed of theKaweah River in California, USA. We make use of the integrated surface water–groundwater model, ParFlow.CLM, and several gridded datasets commonly usedin hydrologic studies, downscaled NLDAS-2, PRISM, Daymet, Gridmet, andTopoWx. Simulations indicate that, across all forcing datasets, mountain front recharge is an important component of the water budget in themountainous watershed, accounting for 9 %–72 % of the annual precipitation and ∼90 % of the total mountain system recharge to theadjacent Central Valley aquifer. The uncertainty in gridded air temperatureor precipitation datasets, when assessed individually, results in similarranges of uncertainty in the simulated water budget. Variations in simulatedrecharge to changes in precipitation (elasticities) and air temperature(sensitivities) are larger than 1 % change in recharge per 1 % change inprecipitation or 1 ∘C change in temperature. The total volume ofsnowmelt is the primary factor creating the high water budget sensitivity, and snowmelt volume is influenced by both precipitation and air temperatureforcings. The combined effect of uncertainty in air temperature andprecipitation on recharge is additive and results in uncertainty levels roughly equal to the sum of the individual uncertainties depending on thehydroclimatic condition of the watershed. Mountain system recharge pathwaysincluding mountain block recharge, mountain aquifer recharge, and mountainfront recharge are less sensitive to changes in air temperature than changesin precipitation. Mountain front and mountain block recharge are moresensitive to changes in precipitation than other recharge pathways. Themagnitude of uncertainty in the simulated water budget reflects theimportance of developing high-quality meteorological forcing datasets in mountainous regions.more » « less
- 
            na (Ed.)Environmental observation networks, such as AmeriFlux, are foundational for monitoring ecosystem response to climate change, management practices, and natural disturbances; however, their effectiveness depends on their representativeness for the regions or continents. We proposed an empirical, time series approach to quantify the similarity of ecosystem fluxes across AmeriFlux sites. We extracted the diel and seasonal characteristics (i.e., amplitudes, phases) from carbon dioxide, water vapor, energy, and momentum fluxes, which reflect the effects of climate, plant phenology, and ecophysiology on the observations, and explored the potential aggregations of AmeriFlux sites through hierarchical clustering. While net radiation and temperature showed latitudinal clustering as expected, flux variables revealed a more uneven clustering with many small (number of sites < 5), unique groups and a few large (> 100) to intermediate (15–70) groups, highlighting the significant ecological regulations of ecosystem fluxes. Many identified unique groups were from under-sampled ecoregions and biome types of the International Geosphere-Biosphere Programme (IGBP), with distinct flux dynamics compared to the rest of the network. At the finer spatial scale, local topography, disturbance, management, edaphic, and hydrological regimes further enlarge the difference in flux dynamics within the groups. Nonetheless, our clustering approach is a data-driven method to interpret the AmeriFlux network, informing future cross-site syntheses, upscaling, and model-data benchmarking research. Finally, we highlighted the unique and underrepresented sites in the AmeriFlux network, which were found mainly in Hawaii and Latin America, mountains, and at under- sampled IGBP types (e.g., urban, open water), motivating the incorporation of new/unregistered sites from these groups.more » « lessFree, publicly-accessible full text available September 1, 2026
- 
            Abstract Woody plant encroachment is a global phenomenon whereby shrubs or trees replace grasses. The hydrological consequences of this ecological shift are of broad interest in ecohydrology, yet little is known of how plant and intercanopy patch dynamics, distributions, and connectivity influence catchment‐scale responses. To address this gap, we established research catchments in the Sonoran and Chihuahuan Deserts (near Green Valley, Arizona and near Las Cruces, New Mexico, respectively) that represent shrub encroachment in contrasting arid climates. Our main goals in the coordinated observations were to: (a) independently measure the components of the catchment water balance, (b) deploy sensors to quantify the spatial patterns of ecohydrological processes, (c) use novel methods for characterizing catchment properties, and (d) assess shrub encroachment impacts on ecohydrological processes through modelling studies. Datasets on meteorological variables; energy, radiation, and CO2fluxes; evapotranspiration; soil moisture and temperature; and runoff at various scales now extend to nearly 10 years of observations at each site, including both wet and dry periods. Here, we provide a brief overview of data collection efforts and offer suggestions for how the coordinated datasets can be exploited for ecohydrological inferences and modelling studies. Given the representative nature of the catchments, the available databases can be used to generalize findings to other catchments in desert landscapes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
